网站首页 个人文档 个人总结 工作总结 述职报告 心得体会 演讲稿 讲话致辞 实用文 教学资源 企业文化 公文写作范文 小论文

大学物理实验报告【精彩多篇】

栏目: 实用文精选 / 发布于: / 人气:1.16W

大学物理实验报告【精彩多篇】

大学物理实验报告 篇一

实验报告

一。预习报告

1.简要原理

2.注意事项

二。实验目的

三。实验器材

四。实验原理

五。实验内容、步骤

六。实验数据记录与处理

七。实验结果分析以及实验心得

八。原始数据记录栏(最后一页)

把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报,就叫实验报告。

实验报告的种类因科学实验的对象而异。如化学实验的报告叫化学实验报告,物理实验的报告就叫物理实验报告。随着科学事业的日益发展,实验的种类、项目等日见繁多,但其格式大同小异,比较固定。实验报告必须在科学实验的基础上进行。它主要的用途在于帮助实验者不断地积累研究资料,总结研究成果。

实验报告的书写是一项重要的基本技能训练。它不仅是对每次实验的总结,更重要的是它可以初步地培养和训练学生的逻辑归纳能力、综合分析能力和文字表达能力,是科学论文写作的基础。因此,参加实验的每位学生,均应及时认真地书写实验报告。要求内容实事求是,分析全面具体,文字简练通顺,誊写清楚整洁。

实验报告内容与格式

(一) 实验名称

要用最简练的语言反映实验的内容。如验证某程序、定律、算法,可写成“验证×××”;分析×××。

(二) 所属课程名称

(三) 学生姓名、学号、及合作者

(四) 实验日期和地点(年、月、日)

(五) 实验目的

目的要明确,在理论上验证定理、公式、算法,并使实验者获得深刻和系统的理解,在实践上,掌握使用实验设备的技能技巧和程序的调试方法。一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。

(六) 实验内容

这是实验报告极其重要的内容。要抓住重点,可以从理论和实践两个方面考虑。这部分要写明依据何种原理、定律算法、或操作方法进行实验。详细理论计算过程。

(七) 实验环境和器材

实验用的软硬件环境(配置和器材)。

(八) 实验步骤

只写主要操作步骤,不要照抄实习指导,要简明扼要。还应该画出实验流程图(实验装置的结构示意图),再配以相应的文字说明,这样既可以节省许多文字说明,又能使实验报告简明扼要,清楚明白。

(九) 实验结果

实验现象的描述,实验数据的处理等。原始资料应附在本次实验主要操作者的实验报告上,同组的合作者要复制原始资料。

对于实验结果的表述,一般有三种方法:

1. 文字叙述: 根据实验目的将原始资料系统化、条理化,用准确的专业术语客观地描述实验现象和结果,要有时间顺序以及各项指标在时间上的关系。

2. 图表: 用表格或坐标图的方式使实验结果突出、清晰,便于相互比较,尤其适合于分组较多,且各组观察指标一致的实验,使组间异同一目了然。每一图表应有表目和计量单位,应说明一定的中心问题。

3. 曲线图 应用记录仪器描记出的曲线图,这些指标的变化趋势形象生动、直观明了。

在实验报告中,可任选其中一种或几种方法并用,以获得最佳效果。

(十) 讨论

根据相关的理论知识对所得到的实验结果进行解释和分析。如果所得到的实验结果和预期的结果一致,那么它可以验证什么理论?实验结果有什么意义?说明了什么问题?这些是实验报告应该讨论的。但是,不能用已知的理论或生活经验硬套在实验结果上;更不能由于所得到的实验结果与预期的结果或理论不符而随意取舍甚至修改实验结果,这时应该分析其异常的可能原因。如果本次实验失败了,应找出失败的原因及以后实验应注意的事项。不要简单地复述课本上的理论而缺乏自己主动思考的内容。

另外,也可以写一些本次实验的心得以及提出一些问题或建议等。(十一) 结论

结论不是具体实验结果的再次罗列,也不是对今后研究的展望,而是针对这一实验所能验证的概念、原则或理论的简明总结,是从实验结果中归纳出的一般性、概括性的判断,要简练、准确、严谨、客观。

(十二) 鸣谢(可略)

在实验中受到他人的帮助,在报告中以简单语言感谢。

(十三) 参考资料

【实验名称】静电跳球

【实验目的】观察静电力

【实验器材】韦氏起电机,静电跳球装置(如图)

【实验原理、操作及现象】

将两极板分别与静电起电机相连接,顺时针摇动起电机,使两极板分别带正、负电荷,这时小金属球也带有与下板同号的电荷。同号电荷相斥,异号电荷相吸,小球受下极板的排斥和上极板的吸引,跃向上极板,与之接触后,小球所带的电荷被中和反而带上与上极板相同的电荷,于是又被排向下极板。如此周而复始,于是可观察到球在容器内上下跳动。当两极板电荷被中和时,小球随之停止跳动。

【注意事项】

1.摇动起电机时应由慢到快,并且不宜过快;摇转停止时亦需慢慢进行,可松开手柄靠摩擦力使其自然减慢。

2.在摇动起电机时,起电机手柄均带电且高速摇动时电压高达数万伏,切不可用手机或身体其他位置接触,不然会有火花放电,引起触电。

静电跳球中小学科学探究实验室仪器模型设备实验目的:

1、探究静电作用力的现象及原理。

2、研究能量间的转化过程。实验器材:圆铝板2个、圆形有机玻璃筒、静电导体球(由铝膜做成)若干。

提出问题:在以前的实验中,我们对电场以及静电的作用力已经有所了解。那么,在两块极板间,由铝箔做成的小球真能克服重力上蹦下跳吗?猜想与假设:在强电场的作用下,由铝箔做成的小球能够克服重力而上下跳动。 实验过程:

1、在两圆铝板间放一有机玻璃环,里面放了一些静电导体球,当接通高压直流电源后观察静电导体球的运动情况。

2、增大两极板间的电压,观察现象。

3、实验完毕要及时关闭电源,必须用接地线分别接触两极板进行放电。

探究问题:

1、仪器内的小球为什么会跳起来?

2、静电导体球实际在做什么工作?3、为什么增大两极板间的电压两极板间产生火花放电现象?实验结论与体会: (以下由学生总结并交流,也可由教师引导得出)课外活动: 梳子摩擦头发后,用梳子可以吸起细小的纸屑,有些纸屑过一会又掉下来。实际做一做,能够解释吗?

注意事项:

1、接好电路后,再调整两根输出导线之间的距离至少离开10厘米。太近时会击穿空气而打火。

2、接通高压电源后就不能再触摸高压端和电极板,否则会触电而麻木。实验做完后,先关闭电源开关,再用接地线分别接触两个电极进行放电。

大学物理实验报告 篇二

重力加速度的测定

精确测定银川地区的重力加速度

测量结果的相对不确定度不超过5%

初步确定有以下六种模型方案:

所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等。

利用自由落体原理使重物做自由落体运动。选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数。由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

重力加速度的计算公式推导如下:

取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知:

ncosα-mg=0 (1)

nsinα=mω2x (2)

两式相比得tgα=ω2x/g,又 tgα=dy/dx,∴dy=ω2xdx/g,

∴y/x=ω2x/2g. ∴ g=ω2x2/2y.

.将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

所用仪器为:米尺、秒表、单摆。

使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t

摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:

g=4π2n2h/t2.

将所测的n、t、h代入即可求得g值。

在摆角很小时,摆动周期为:

通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。

四、采用模型六利用单摆法测量重力加速度

摘要:

重力加速度是物理学中一个重要参量。地球上各个地区重力加速度的数值,随该地区的地理纬度和相对海平面的高度而稍有差异。一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,最大值与最小值之差约为1/300。研究重力加速度的分布情况,在地球物理学中具有重要意义。利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探测。

伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的幅度无关,并进一步用实验证实了观察的结果,为单摆作为计时装置奠定了基础。这就是单摆的等时性原理。

应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长l,只需要量出摆长,并测定摆动的周期,就可以算出g值。

实验器材:

单摆装置(自由落体测定仪),钢卷尺,游标卡尺、电脑通用计数器、光电门、单摆线

实验原理:

单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆锥质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆锥即在平衡位置左右作周期性的往返摆动,如图2-1所示。

f =p sinθ

f

θ

t=p cosθ

p = mg

l

图2-1 单摆原理图

摆锥所受的力f是重力和绳子张力的合力,f指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f也可近似地看作沿着这一直线。设摆长为l,小球位移为x,质量为m,则

sinθ=

f=psinθ=-mg =-m x (2-1)

由f=ma,可知a=- x

式中负号表示f与位移x方向相反。

单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a= =-ω2x

可得ω=

于是得单摆运动周期为:

t=2π/ω=2π (2-2)

t2= l (2-3)

或 g=4π2 (2-4)

利用单摆实验测重力加速度时,一般采用某一个固定摆长l,在多次精密地测量出单摆的周期t后,代入(2-4)式,即可求得当地的重力加速度g。

由式(2-3)可知,t2和l之间具有线性关系, 为其斜率,如对于各种不同的摆长测出各自对应的周期,则可利用t2—l图线的斜率求出重力加速度g。

试验条件及误差分析:

上述单摆测量g的方法依据的公式是(2-2)式,这个公式的成立是有条件的,否则将使测量产生如下系统误差:

1. 单摆的摆动周期与摆角的关系,可通过测量θ<5°时两次不同摆角θ1、θ2的周期值进行比较。在本实验的测量精度范围内,验证出单摆的t与θ无关。

实际上,单摆的周期t随摆角θ增加而增加。根据振动理论,周期不仅与摆长l有关,而且与摆动的角振幅有关,其公式为:

t=t0[1+( )2sin2 +( )2sin2 +……]

式中t0为θ接近于0o时的周期,即t0=2π

2.悬线质量m0应远小于摆锥的质量m,摆锥的半径r应远小于摆长l,实际上任何一个单摆都不是理想的,由理论可以证明,此时考虑上述因素的影响,其摆动周期为:

3.如果考虑空气的浮力,则周期应为:

式中t0是同一单摆在真空中的摆动周期,ρ空气是空气的密度,ρ摆锥 是摆锥的密度,由上式可知单摆周期并非与摆锥材料无关,当摆锥密度很小时影响较大。

4.忽略了空气的粘滞阻力及其他因素引起的摩擦力。实际上单摆摆动时,由于存在这些摩擦阻力,使单摆不是作简谐振动而是作阻尼振动,使周期增大。

大学物理实验报告 篇三

摘要:简要说明了大学物理实验的重要地位和实验预习的重要性。详细介绍如何做好大学物理实验课程的实验预习,包括预习要求、预习重点、设计性实验的预习、预习报告的内容;并以“拉伸法测量钢丝杨氏模量”这一实验项目为例,具体说明了怎样做好实验预习。

大学物理实验是高等理工科院校对学生进行科学实验基本训练的必修基础课程,是本科生接受系统实验方法和实验技能训练的开端。

大学物理实验覆盖面广,具有丰富的实验思想、方法、手段,同时能提供综合性很强的基本实验技能训练,是培养学生科学实验能力、提高科学素质的重要基础。

在培养学生严谨的治学态度、活跃的创新意识、理论联系实际和适应科技发展的综合应用能力等方面,大学物理实验具有其他实践类课程不可替代的作用。

与理论课程不同,实验课程的特点是学生在教师的指导下自己动手,独立完成实验任务。所以实验预习尤其重要。上课时教师要检查实验预习情况,评定实验预习成绩。没有预习的学生不能做实验。

实验预习的目的是全面认识和了解所要做的实验项目。因此,要求在预习时应理解实验原理,了解实验仪器和实验方法,明确实验任务,写出简单的预习报告。

(1) 明确实验任务

要明确实验中需要测量哪些物理量,每个待测量又分别需要什么实验仪器和采用什么实验方法来测量。

(2)清楚实验原理

要理解实验基本原理。例如,电位差计精确测量电压实验用到补偿法原理进行定标,应该理解补偿电路的特点,什么是定标,定标的作用以及如何利用补偿电路定标;电位差计测量的主要误差来源,怎样减小误差。

(3)了解实验仪器 要初步了解实验仪器,通过预习知道需要使用哪些仪器,并对仪器的相关知识进行初步学习,特别是仪器的结构功能、操作要领、注意事项等。

(4)了解实验误差

要了解引起实验误差的主要因素有哪些,思考在做实验时应当怎样减小误差。 (5)总结实验预习

尝试归纳总结实验所体现的基本思想,自己在预习过程做了哪些工作,遇到了哪些问题,解决了哪些问题,怎么解决的,还有哪些问题不清楚,等等。

总之,实验预习时要认真阅读实验教材,积极参考网上实验学习辅导,必要时主动查阅相关资料,明确实验目的和要求,理解实验原理,掌握测量方案,初步了解仪器的构造原理和使用方法,在此基础上写好预习报告。

设计性实验项目除了做好一般实验项目的预习工作以外,还要做好下列预习工作。 (1)阐述实验原理,选择实验方案

根据实验内容要求和实验教材中实验原理的提示,认真查阅有关资料,详细写出实验原理和实验方案。

(2)选择测量仪器、测量方法和测量条件

根据实验方案的要求,确定出使用什么样的实验仪器、采用什么样的测量方法、在什么样的条件下进行测量。选择测量方法时还要考虑到选用什么样的数据处理方法。

(3)确定实验过程,拟定实验步骤

明确实验的整体过程,拟定出详细的实验步骤。

3.实验原理(必要的计算公式、原理图、电路图、光路图、相关说明等表格。)

特别说明:

预习报告为预习时写的实验报告,不一定冠名“预习”。如果预习实验报告1~4项内容书写完整规范,整齐清晰,可以作为实验报告的一部分。撰写实验报告时可以在此基础上续加其他内容。

下面以“拉伸法测钢材的杨氏模量”这一实验项目为例,具体说明实验预习的主要内容。

首先根据实验目的和实验内容要求,有针对性地阅读教材,重点思考和解决如下问题: (1)什么是杨氏弹性模量? (2)测量杨氏模量的计算公式如何?

(3)通过杨氏模量的计算公式明确要测量哪些物理量?这些物理量如何测量? (4)实验测量中用到什么测量方法? (5)实验中的数据如何记录和处理?

实验5-3 拉伸法测钢材的杨氏模量

(1)学会拉伸法测量杨氏弹性模量的基本原理和实现方法。 (2)掌握用光杠杆法测量微小伸长量的原理和方法。 (3)学会用逐差法处理实验数据。

(通过实验目的可以知道本实验中要用到几种测量长度的器具,要提前预习使用方法,并且要熟悉“光杠杆”测微小长度变化的方法以及用逐差法处理数据。)

(1)什么是杨氏弹性模量

设钢丝截面积为s,长为l。若沿长度方向施以外力f使钢丝伸长△l,则比值f/s 是单位截面上的作用力,称为应力;比值△l/l 是物体的相对伸长量,称为应变,表示物体形变的大小。根据胡克定律,在物体的弹性限度内,应力与应变成正比

式中比例系数e的大小,只取决于材料本身的性质,与外力f、物体原长l 及截面积s 的大小无关,叫做杨氏模量。

(所以实验当中需要测量f、l、s或d、δl几个量才能计算出杨氏模量,究竟如何测量呢?)

(2) 用光杠杆法测量微小长度变化量δl 光杠杆结构如图1所示,光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触,当杠杆支脚随被测物上升或下降微小距离δl时,镜面法线转过一个φ 角,而入射到望远镜的光线转过2φ角,如图2 所示。当φ 很小时,有

图1 光杠杆结构

式中k为支脚尖到刀口的垂直距离(也叫光杠杆

的臂长)。根据光的反射定律,反射角和入射角相等,故当镜面转动φ 角时,反射光线转动2φ 角,由图2可知

式中d 为镜面到标尺的距离,l 为从望远镜中观察到的标尺移动的距离(设长度变化前望远镜中的叉丝横线读出标尺上相应的刻度值为x,当长度变化两次读数差为l =

式(4)得微小伸长量为

l

d

图2 光杠杆原理

k

l 2d

(3)测定钢丝杨氏模量的理论公式

由式(2)和式(5)可得实验测定钢丝杨氏模量的理论公式为

e?

8fld

?d2kl

杨氏模量测定仪、光杠杆、望远镜尺组、米尺、千分尺等。

(应该在下面阅读中仔细查阅杨氏模量测定仪、千分尺的结构及使用方法如杨氏模量仪中光杠杆及其测微小长度变化的原理、千分尺的读数方法;并思考如何选择上面几种测量仪器。)

(1)调整杨氏模量仪

(2)光杠杆及望远镜尺组的调节

(3)测量相应物理量

(4)逐差法处理数据

(实验中要注意光杠杆(望远镜、平面镜、标尺)的调节,特别注意如何消除十字叉丝像和标尺像的视差;千分尺的读数(注意初末位置的读数),初步理解不同量如何选择相应测量仪器的方法。)

大学物理实验报告 篇四

实验目的:通过演示来了解弧光放电的原理

实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。

雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。其下端的空气最先被击穿而放电。由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击穿,形成不断放电。结果弧光区逐渐上移,犹如爬梯子一般的壮观。当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,弧光因而熄灭。

简单操作:打开电源,观察弧光产生。并观察现象。(注意弧光的产生、移动、消失)。

实验现象:

两根电极之间的高电压使极间最狭窄处的电场极度强。巨大的电场力使空气电离而形成气体离子导电,同时产生光和热。热空气带着电弧一起上升,就象圣经中的雅各布(yacob以色列人的祖先)梦中见到的天梯。

注意事项:演示器工作一段时间后,进入保护状态,自动断电,稍等一段时间,仪器恢复后可继续演示,

实验拓展:举例说明电弧放电的应用