网站首页 个人文档 个人总结 工作总结 述职报告 心得体会 演讲稿 讲话致辞 实用文 教学资源 企业文化 公文写作范文 小论文

高中数学知识点总结(精品多篇)

栏目: 工作总结精选 / 发布于: / 人气:2.1W

高中数学知识点总结(精品多篇)

高中数学知识点总结 篇一

★高中数学导数知识点

一、早期导数概念————特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)—f(A),发现的因子E就是我们所说的导数f(A)。

二、17世纪————广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。

三、19世纪导数————逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε—δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。

四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。

★高中数学导数要点

1、求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:

①求函数yf(x)的定义域;

②求导数f(x);

③解不等式f(x)0,解集在定义域内的不间断区间为增区间;

④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

2、求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;

(2)求导数f(x);

(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的

变化情况:

(4)检查f(x)的符号并由表格判断极值。

3、求函数的最大值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

求函数f(x)在区间[a,b]上的最大值和最小值的步骤:

(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。

4、解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

5、导数在实际生活中的应用:

实际生活求解最大(小)值问题,通常都可转化为函数的最值。在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

高中数学知识点总结 篇二

一、集合、简易逻辑

1、集合;

2、子集;

3、补集;

4、交集;

5、并集;

6、逻辑连结词;

7、四种命题;

8、充要条件。

二、函数

1、映射;

2、函数;

3、函数的单调性;

4、反函数;

5、互为反函数的函数图象间的关系;

6、指数概念的扩充;

7、有理指数幂的运算;

8、指数函数;

9、对数;

10、对数的运算性质;

11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)

1、数列;

2、等差数列及其通项公式;

3、等差数列前n项和公式;

4、等比数列及其通顶公式;

5、等比数列前n项和公式。

四、三角函数

1、角的概念的推广;

2、弧度制;

3、任意角的三角函数;

4、单位圆中的三角函数线;

5、同角三角函数的基本关系式;

6、正弦、余弦的诱导公式;

7、两角和与差的正弦、余弦、正切;

8、二倍角的正弦、余弦、正切;

9、正弦函数、余弦函数的图象和性质;

10、周期函数;

11、函数的奇偶性;

12、函数的图象;

13、正切函数的图象和性质;

14、已知三角函数值求角;

15、正弦定理;

16、余弦定理;

17、斜三角形解法举例。

五、平面向量

1、向量;

2、向量的加法与减法;

3、实数与向量的积;

4、平面向量的坐标表示;

5、线段的定比分点;

6、平面向量的数量积;

7、平面两点间的距离;

8、平移。

六、不等式

1、不等式;

2、不等式的基本性质;

3、不等式的证明;

4、不等式的解法;

5、含绝对值的不等式。

七、直线和圆的方程

1、直线的倾斜角和斜率;

2、直线方程的点斜式和两点式;

3、直线方程的`一般式;

4、两条直线平行与垂直的条件;

5、两条直线的交角;

6、点到直线的距离;

7、用二元一次不等式表示平面区域;

8、简单线性规划问题;

9、曲线与方程的概念;

10、由已知条件列出曲线方程;

11、圆的标准方程和一般方程;

12、圆的参数方程。

八、圆锥曲线

1、椭圆及其标准方程;

2、椭圆的简单几何性质;

3、椭圆的参数方程;

4、双曲线及其标准方程;

5、双曲线的简单几何性质;

6、抛物线及其标准方程;

7、抛物线的简单几何性质。

九、直线、平面、简单何体

1、平面及基本性质;

2、平面图形直观图的画法;

3、平面直线;

4、直线和平面平行的判定与性质;

5、直线和平面垂直的判定与性质;

6、三垂线定理及其逆定理;

7、两个平面的位置关系;

8、空间向量及其加法、减法与数乘;

9、空间向量的坐标表示;

10、空间向量的数量积;

11、直线的方向向量;

12、异面直线所成的角;

13、异面直线的公垂线;

14、异面直线的距离;

15、直线和平面垂直的性质;

16、平面的法向量;

17、点到平面的距离;

18、直线和平面所成的角;

19、向量在平面内的射影;

20、平面与平面平行的性质;

21、平行平面间的距离;

22、二面角及其平面角;

23、两个平面垂直的判定和性质;

24、多面体;

25、棱柱;

26、棱锥;

27、正多面体;

28、球。

十、排列、组合、二项式定理

1、分类计数原理与分步计数原理;

2、排列;

3、排列数公式;

4、组合;

5、组合数公式;

6、组合数的两个性质;

7、二项式定理;

8、二项展开式的性质。

十一、概率

1、随机事件的概率;

2、等可能事件的概率;

3、互斥事件有一个发生的概率;

4、相互独立事件同时发生的概率;

5、独立重复试验。

必修一函数重点知识整理

1、函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(—x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2、复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3、函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;

4、函数的周期性

(1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5、方程k=f(x)有解k∈D(D为f(x)的值域);

6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7、(1)(a>0,a≠1,b>0,n∈R+);

(2)l og a N=(a>0,a≠1,b>0,b≠1);

(3)l og a b的符号由口诀“同正异负”记忆;

(4)a log a N= N(a>0,a≠1,N>0);

8、判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且唯一;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10、对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

13、恒成立问题的处理方法:

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解。

拓展阅读:高中数学复习方法

1、把答案盖住看例题

例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

2、研究每题都考什么

数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

3、错一次反思一次

每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。

4、分析试卷总结经验

每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

高考数学必修必考知识点归纳总结 篇三

高考数学必考知识点归纳必修一:

1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

高考数学必考知识点归纳必修二:

1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程

高考数学必考知识点归纳必修三:

1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

高考数学必考知识点归纳必修四:

1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

高考数学必考知识点归纳必修五:

1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高考数学必考知识点归纳文科选修:

选修1--1:重点:高考占30分

1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)

选修1--2:

1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

高考数学必考知识点归纳理科选修:

选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数

选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:

高中数学知识点总结 篇四

等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。

1:等比数列通项公式:an=a1Xq^(n-1);推广式:an=am·q^(n-m);

2:等比数列求和公式:等比求和:Sn=a1+a2+a3+。.。.。.。+an

①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

②当q=1时,Sn=n×a1(q=1)记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

3:等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

4:性质:

①若m、n、p、q∈N,且m+n=p+q,则am·an=apXaq;

②在等比数列中,依次每k项之和仍成等比数列。

例题:设ak,al,am,an是等比数列中的第k、l、m、n项,若k+l=m+n,求证:akXal=amXan

证明:设等比数列的首项为a1,公比为q,则ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

所以:akXal=a^2Xq^(k+l-2),amXan=a^2Xq(m+n-2),故:akXal=amXan

说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:a(1+k)·a(n-k)=a1·an

对于等差数列,同样有:在等差数列中,距离两端等这的两项之和等于首末两项之和。即:a(1+k)+a(n-k)=a1+an

高中数学知识点总结 篇五

(一)导数第一定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义

(二)导数第二定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第二定义

(三)导函数与导数

如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。

(四)单调性及其应用

1、利用导数研究多项式函数单调性的一般步骤

(1)求f(x)

(2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2、用导数求多项式函数单调区间的一般步骤

(1)求f(x)

(2)f(x)>0的解集与定义域的交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间

学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。

高中数学知识点总结 篇六

等比数列公式性质知识点

1、等比数列的有关概念

(1)定义:

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列。这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈NX,q为非零常数)。

(2)等比中项:

如果a、G、b成等比数列,那么G叫做a与b的等比中项。即:G是a与b的等比中项a,G,b成等比数列G2=ab.

2、等比数列的有关公式

(1)通项公式:an=a1qn-1.

3、等比数列{an}的常用性质

(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈NX),则am·an=ap·aq=a.

特别地,a1an=a2an-1=a3an-2=…。

(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.

4、等比数列的特征

(1)从等比数列的定义看,等比数列的任意项都是非零的',公比q也是非零常数。

(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

5、等比数列的前n项和Sn

(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用。

(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误。

等比数列知识点

1、等比中项

如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。

有关系:

注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

2、等比数列通项公式

an=a1Xq’(n-1)(其中首项是a1,公比是q)

an=Sn-S(n-1)(n≥2)

前n项和

当q≠1时,等比数列的前n项和的公式为

Sn=a1(1-q’n)/(1-q)=(a1-a1Xq’n)/(1-q)(q≠1)

当q=1时,等比数列的前n项和的公式为

Sn=na1

3、等比数列前n项和与通项的关系

an=a1=s1(n=1)

an=sn-s(n-1)(n≥2)

4、等比数列性质

(1)若m、n、p、q∈NX,且m+n=p+q,则am·an=ap·aq;

(2)在等比数列中,依次每k项之和仍成等比数列。

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)

(6)任意两项am,an的关系为an=am·q’(n-m)

(7)在等比数列中,首项a1与公比q都不为零。

注意:上述公式中a’n表示a的n次方。

高中数学知识点总结 篇七

(一)导数第一定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即导数第一定义

(二)导数第二定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即 导数第二定义

(三)导函数与导数

如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y, f(x), dy/dx, df(x)/dx。导函数简称导数。

(四)单调性及其应用

1、利用导数研究多项式函数单调性的一般步骤

(1)求f(x)

(2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2、用导数求多项式函数单调区间的一般步骤

(1)求f(x)

(2)f(x)>0的解集与定义域的交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间

学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。

高考的知识板块 篇八

集合与简单逻辑:5分或不考

函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点)

平面向量与解三角形

立体几何:22分左右

不等式:(线性规则)5分必考

数列:17分(一道大题+一道选择或填空)易和函数结合命题

平面解析几何:(30分左右)

计算原理:10分左右

概率统计:12分----17分

复数:5分

高中数学知识点总结 篇九

高考数学导数知识点

(一)导数第一定义

设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0 + △x也在该邻域内)时,相应地函数取得增量△y = f(x0 + △x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f'(x0),即导数第一定义

(二)导数第二定义

设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x — x0也在该邻域内)时,相应地函数变化△y = f(x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f'(x0),即导数第二定义

(三)导函数与导数

如果函数y = f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y = f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y = f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。

(四)单调性及其应用

1。利用导数研究多项式函数单调性的一般步骤

(1)求f¢(x)

(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2。用导数求多项式函数单调区间的一般步骤

(1)求f¢(x)

(2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间

高中数学重难点知识点

高中数学包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22———27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程:

必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15———20分,并且经常和其他函数混合起来考查

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17———22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高中数学知识点大全

一、集合与简易逻辑

1、集合的元素具有确定性、无序性和互异性。

2、对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集。

3、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

4、“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”。

5、四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”。

原命题等价于逆否命题,但原命题与逆命题、否命题都不等价。反证法分为三步:假设、推矛、得果。

6、充要条件

二、函数

1、指数式、对数式,

2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”。

(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个。

(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像。

3、单调性和奇偶性

(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同。

偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反。

(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”。

复合函数的奇偶性特点是:“内偶则偶,内奇同外”。复合函数要考虑定义域的变化。(即复合有意义)

4、对称性与周期性(以下结论要消化吸收,不可强记)

(1)函数与函数的图像关于直线(轴)对称。

推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称。

推广二:函数,的图像关于直线对称。

(2)函数与函数的图像关于直线(轴)对称。

(3)函数与函数的图像关于坐标原点中心对称。

三、数列

1、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系

2、等差数列中

(1)等差数列公差的取值与等差数列的单调性。

(2)也成等差数列。

(3)两等差数列对应项和(差)组成的新数列仍成等差数列。

(4)仍成等差数列。

(5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;

(6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和—偶数项和”=此数列的中项。

(7)两数的等差中项惟一存在。在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解。

(8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式)。

3、等比数列中:

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的`单调性。

(2)两等比数列对应项积(商)组成的新数列仍成等比数列。

(3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;

(4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和。

(5)并非任何两数总有等比中项。仅当实数同号时,实数存在等比中项。对同号两实数的等比中项不仅存在,而且有一对。也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时)。在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解。

(6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式)。

4、等差数列与等比数列的联系

(1)如果数列成等差数列,那么数列(总有意义)必成等比数列。

(2)如果数列成等比数列,那么数列必成等差数列。

(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件。

(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数。

如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列。

5、数列求和的常用方法:

(1)公式法:①等差数列求和公式(三种形式),

②等比数列求和公式(三种形式),

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。

(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法)。

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一)。

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和

(6)通项转换法。

四、三角函数

1、终边与终边相同(的终边在终边所在射线上)。

终边与终边共线(的终边在终边所在直线上)。

终边与终边关于轴对称

终边与终边关于轴对称

终边与终边关于原点对称

一般地:终边与终边关于角的终边对称。

与的终边关系由“两等分各象限、一二三四”确定。

2、弧长公式:,扇形面积公式:1弧度(1rad)。

3、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正。

4、三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”。务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角

5、三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

6、三角函数诱导公式的本质是:奇变偶不变,符号看象限。

7、三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换。

8、三角函数性质、图像及其变换:

(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变。既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定。如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?

(2)三角函数图像及其几何性质:

(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换。

(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法。

9、三角形中的三角函数:

(1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余。锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方。

(2)正弦定理:(R为三角形外接圆的半径)。

(3)余弦定理:常选用余弦定理鉴定三角形的类型。

五、向量

1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征。

2、几个概念:零向量、单位向量(与共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是)。

3、两非零向量平行(共线)的充要条件

4、平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1+ e2。

5、三点共线;

6、向量的数量积:

六、不等式

1、(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。

(2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);

(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);

(4)解含参不等式常分类等价转化,必要时需分类讨论。注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集。

2、利用重要不等式以及变式等求函数的最值时,务必注意a,b(或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。

3、常用不等式有:(根据目标不等式左右的运算结构选用)

a、b、c R,(当且仅当时,取等号)

4、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

5、含绝对值不等式的性质:

6、不等式的恒成立,能成立,恰成立等问题

(1)恒成立问题

若不等式在区间上恒成立,则等价于在区间上

若不等式在区间上恒成立,则等价于在区间上

(2)能成立问题

(3)恰成立问题

若不等式在区间上恰成立,则等价于不等式的解集为。

若不等式在区间上恰成立,则等价于不等式的解集为,

七、直线和圆

1、直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量))。应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

2、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为。

(2)直线在坐标轴上的截距可正、可负、也可为0。直线两截距相等直线的斜率为—1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点。

(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合。

3、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

4、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解。

5、圆的方程:最简方程;标准方程;

6、解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

(1)过圆上一点圆的切线方程

过圆上一点圆的切线方程

过圆上一点圆的切线方程

如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程。

如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离)。

7、曲线与的交点坐标方程组的解;

过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程。

八、圆锥曲线

1、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用。

(1)注意:①圆锥曲线第一定义与配方法的综合运用;

②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆点点距除以点线距商是小于1的正数,双曲线点点距除以点线距商是大于1的正数,抛物线点点距除以点线距商是等于1。

2、圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势。其中,椭圆中、双曲线中。

重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点。

3、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解。特别是:

①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”。

②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理。

③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式

④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化。

4、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点。

注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化。

②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响。

③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等。

九、直线、平面、简单多面体

1、计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

2、计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解。注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线。

3、空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用。注意:书写证明过程需规范。

4、直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质。

如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),

如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心。

5、求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等。注意:补形:三棱锥三棱柱平行六面体

6、多面体是由若干个多边形围成的几何体。棱柱和棱锥是特殊的多面体。

正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体。

7、球体积公式。球表面积公式,是两个关于球的几何度量公式。它们都是球半径及的函数。

十、导数

1、导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,C为常数)

2、多项式函数的导数与函数的单调性

在一个区间上(个别点取等号)在此区间上为增函数。

在一个区间上(个别点取等号)在此区间上为减函数。

3、导数与极值、导数与最值:

(1)函数处有且“左正右负”在处取极大值;

函数在处有且左负右正”在处取极小值。

注意:①在处有是函数在处取极值的必要非充分条件。

②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值。特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记。

③单调性与最值(极值)的研究要注意列表!

(2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”

函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;

注意:利用导数求最值的步骤:先找定义域再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。

高中数学知识点总结 篇十

有界性

设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。

单调性

设函数f(x)的定义域为D,区间I包含于D.如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。

奇偶性

设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数。

几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。

奇函数的例子有x、sin(x)、sinh(x)和erf(x)。

设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数。

几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。

偶函数的例子有|x|、x2、cos(x)和cosh(x)。

偶函数不可能是个双射映射。

连续性

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。